

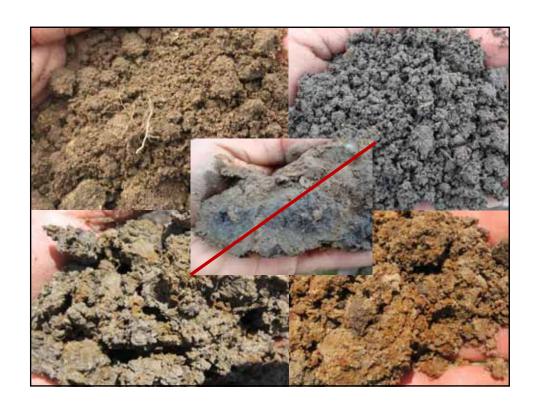
Plan de la conférence

- 1. Notions de sol vivant et en santé
- 2. Au champ : compaction-décompaction
- 3. Comment diagnostiquer un sol en mauvais état
- 4. Déterminer les problèmes avec les profils de sol

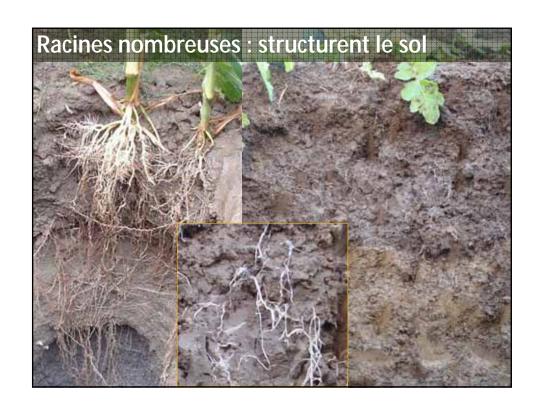
- 1.1. Un sol vivant, c'est un sol aéré
 - bonne macroporosité d'origine biologique
 - bonne décomposition des résidus
 - couleurs brun-rouge
- 1.2. Un sol vivant, c'est un sol avec beaucoup de racines
- 1.3. Avec des vers, c'est encore mieux

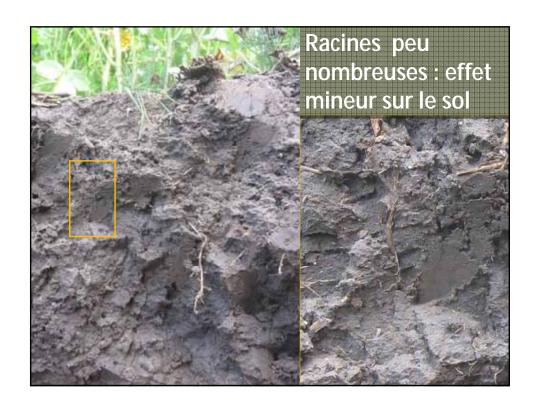
Classement des macropores selon leur taille et leur abondance (Munkholm, 2000)

	Macropores fins (0,5-2 mm) /cm ²	Macropores grossiers (>2 mm) /dm²
Peu	<1	<1
Moyen	1-5	1-5
Élevé	>5	>5
	Le bio, moteu	ır de l'innovatior



- 1.1. Un sol vivant, c'est un sol aéré
 - bonne macroporosité d'origine biologique
 - -bonne décomposition des résidus
 - couleurs brun-rouge
- 1.2. Un sol vivant, c'est un sol avec beaucoup de racines
- 1.3. Avec des vers, c'est encore mieux


- 1.1. Un sol vivant, c'est un sol aéré
 - bonne macroporosité d'origine biologique
 - bonne décomposition des résidus
 - -couleurs brun-rouge
- 1.2. Un sol vivant, c'est un sol avec beaucoup de racines
- 1.3. Avec des vers, c'est encore mieux



- 1.1. Un sol vivant, c'est un sol aéré
 - bonne macroporosité d'origine biologique
 - bonne décomposition des résidus
 - couleurs brun-rouge

1.2. Un sol vivant, c'est un sol avec beaucoup de racines

1.3. Avec des vers, c'est encore mieux

Racines bloquées : ne peuvent pas améliorer l'état du sol

Les racines passent là où il y de la porosité

Ce ne sont pas des marteauxpiqueurs

- 1.1. Un sol vivant, c'est un sol aéré
 - bonne macroporosité d'origine biologique
 - bonne décomposition des résidus
 - couleurs brun-rouge
- 1.2. Un sol vivant, c'est un sol avec beaucoup de racines
- 1.3. Avec des vers, c'est encore mieux

Le bio, moteur de l'innovation!

Les vers de terre

- Améliorent le sol et l'infiltration de l'eau
- Présence indique bonne activité biologique
- Absence ne veut pas dire mauvaise qualité de sol ou mauvaise activité biologique
- Nombreux là où il y a de la nourriture
- Nombreux quand sol peu travaillé
- N'aiment pas le sable

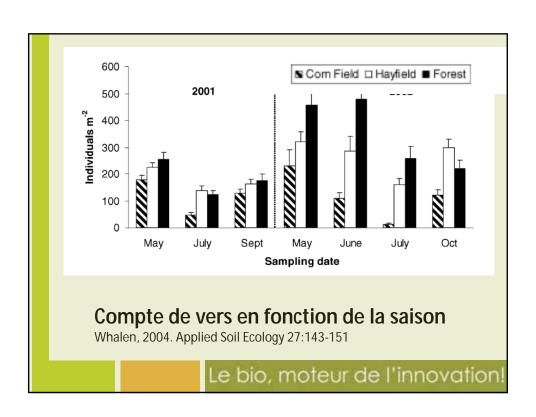
Les vers de terre

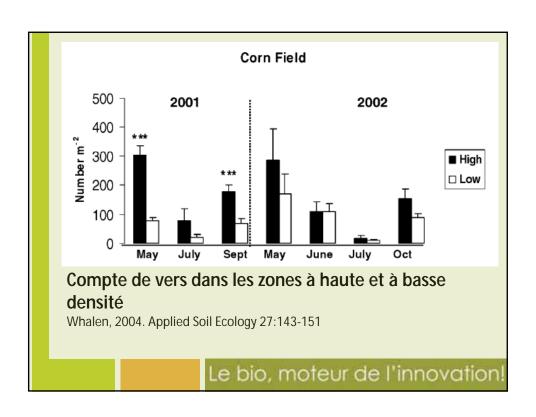
Type de vers et taille	Type de galeries creusées	Localisation dans le profil
Épigés (moins de 5,5 cm)		Dans les résidus près de la surface
Endogés (environ 5 à 11 cm)	Surtout horizontales, remplies par les turricules	De 0 à 30 cm
Anéciques (environ 10 à 30 cm)	Verticales	De 0 à plus de 1 m de profondeur

Nombre de vers (USDA)

Varient de 10 à $1000/m^2$; moyenne USA $50-300/m^2$, prairie $100-500/m^2$

Échantillon	Bon
Pelletée de terre	2-10
Par m ² sur 1 pi de profondeur	100 (en général moins de 200 en sol agricole)
Nombre de galeries	?


Le bio, moteur de l'innovation!


Recherche de J. Whalen (McGill Univ.)

- Échantillonnage sur une profondeur de 15 cm
 - Maïs: 13-229/m² dans un même champ
 - Foin: 138-322/m² dans un même champ
 - Forêt: 124-480/m²
 - Moyenne en champs cultivés : 200/m²; 3-14 % de Lombric, autres vers = endogés
 - 7ones de haute et de basse densité
 - Autres recherches dans l'Est du Canada : 5-435/m²

Les vers de terre

- Population varie du simple au quadruple durant la saison
- Population varie du simple au double d'une année à l'autre
- Population varie du simple au quadruple dans un même champ avec zones de concentration

Plan de la conférence

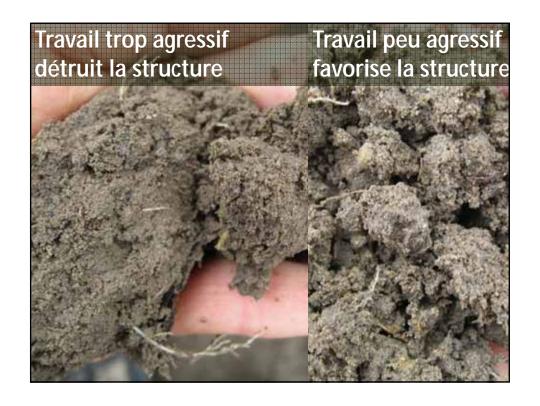
- 1. Notions de sol vivant et en santé
- 2. Au champ : compaction-décompaction
- 3. Comment diagnostiquer un sol en mauvais état
- 4. Déterminer les problèmes avec les profils de sol

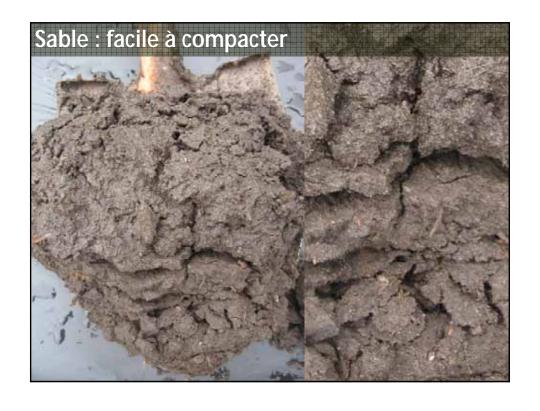
2. Au champ : compaction-décompaction

- Situation normale
- Résultat = fonction de :
 - État du drainage
 - Rotation
 - Méthodes culturales
 - Jugement du producteur
 - Saison

2. Au champ : compaction-décompaction

- Restructuration des sols argileux
 - Fissuration grâce au gel-dégel, humidité sécheresse – phénomène accéléré par le travail du sol
 - Restructuration avec activité biologique quand il y a de l'air

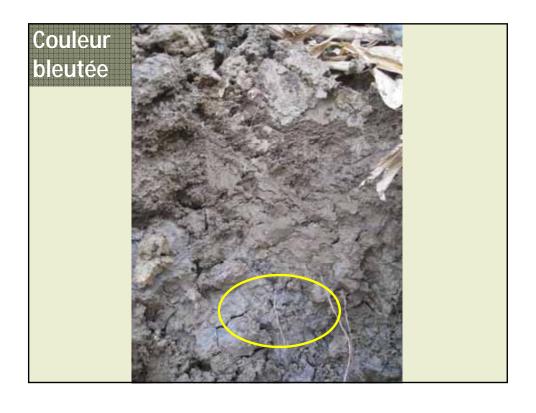




2. Au champ : compaction-décompaction

- Restructuration des sols sableux : activité biologique, racines, travail du sol peu agresssif
- Structure très fragile
- Peu d'activité biologique : sol peut se compacter tout seul ou avec juste un passage de tracteur léger

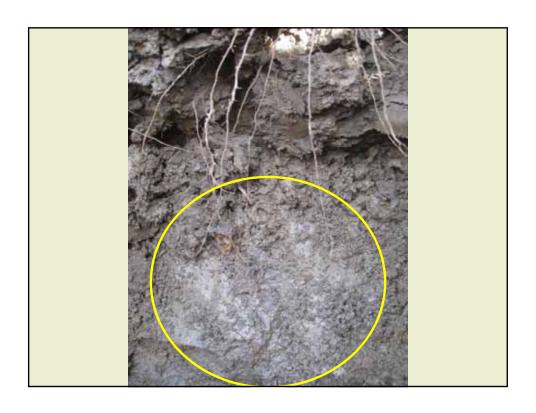
Plan de la conférence


- 1. Notions de sol vivant et en santé
- 2. Au champ : compaction-décompaction
- 3. Comment diagnostiquer un sol en mauvais état
- 4. Déterminer les problèmes avec les profils de sol

Le bio, moteur de l'innovation!

3. Comment diagnostiquer un sol en mauvais état

- Sols compactés
 - Perte de structure
 - Perte de porosité
 - Condition anaérobiques
 - Décomposition des résidus ralentie
 - Activité biologique réductrice : couleurs bleutées
 - Infiltration réduite : nappe perchée
 - Racines bloquées



Plan de la conférence

- 1. Notions de sol vivant et en santé
- 2. Au champ : compaction-décompaction
- 3. Comment diagnostiquer un sol en mauvais état
- 4. Déterminer les problèmes avec les profils de sol

Le bio, moteur de l'innovation!

Les profils de sol

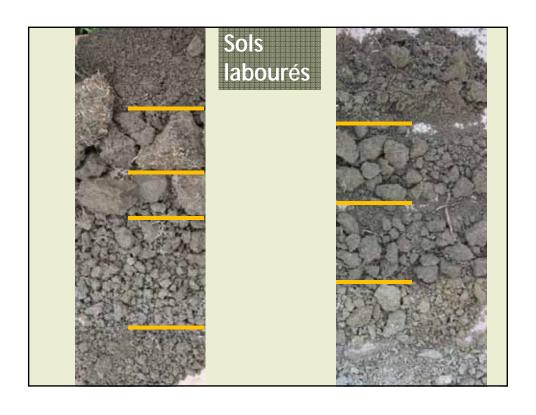
Les profils de sol

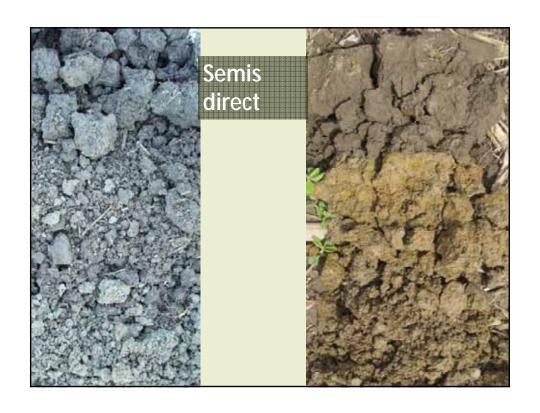
- Choisir des endroits représentatifs
- Faire plusieurs profils
- Période idéale : quand il y a des racines (surtout pour les sols légers)
- Ne pas compacter le coté à examiner
- Rafraîchir la paroi
- Profondeur : 2 pi (3 pi = mieux!)

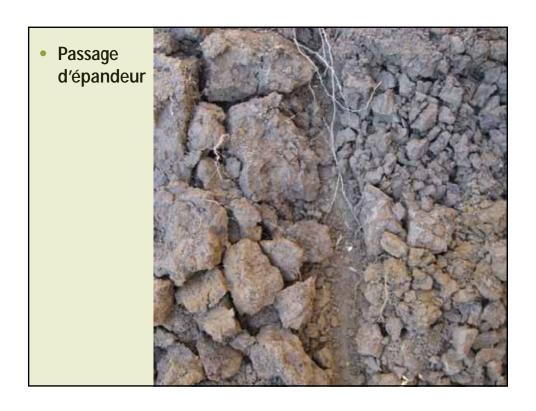
Le bio, moteur de l'innovation!

Les profils de sol

- OBSERVATIONS : porosité, structure, couleur, résidus, vers, racines...
- À faire pour chaque couche


Travail superficiel

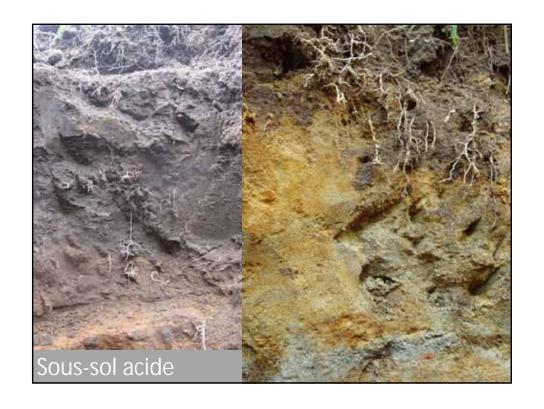

Labour non repris

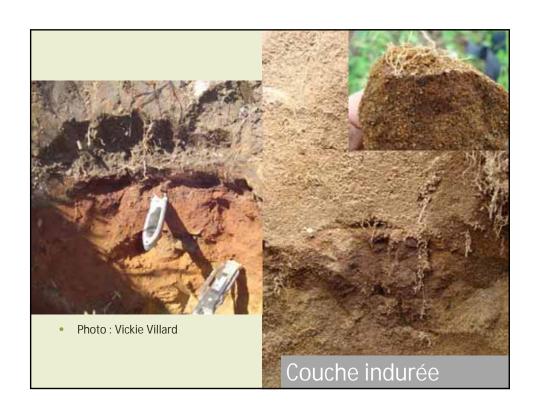

Fond du labour (résidus visibles)


Transition vers la partie non affectée par le travail

Couche - épaisseur (variable)	Caractéristiques générales
Travail superficiel 5 à 7 cm	Structure souvent en bon état
Travail profond non repris 15 cm	Structure en bon état sauf en cas de passages en conditions humides au printemps
Transition 5 à 30 cm	Structure souvent compacte à cause d'une accumulation de compaction due aux passages d'équipements lourds
Zone non affectée par les passages de machinerie 30 à 60 cm	Structure en bon état En général, on creuse le profil jusqu'à cette zone
Zone plus profonde (nappe d'eau)	Sol généralement non structuré (aspect massif)

Les profils de sol


- Sols problématiques
 - Tills massifs
 - Couche naturellement massive
 - Sables très fins peu perméables
 - Sols très acides
 - Couches indurées



Détermination d'une méthode d'évaluation de l'efficacité des systèmes de drainage souterrain – Dura-Club avec G. Lamarre (MAPAQ) et R. Lagacé (Univ. Laval)

Le bio, moteur de l'innovation!

Marcine Le bio, moteur de l'innovation!

