06

bibliographie

  1. Adams, D. C., Nelsen, T. C., Reynolds, W. L. et Knapp, B. W. 1986. Winter Grazing Activity and Forage Intake of Range Cows in
    the Northern Great Plains. Journal of Animal Science, 62(5), 1240–1246. Retrieved from https://doi.org/10.2527/jas1986.6251240x
  2. Anel B., A. Cogliastro, A. Olivier et D. Rivest. 2017. Une agroforesterie pour le Québec. Document de réflexion et d’orientation. Comité agroforesterie, Centre de référence en agriculture et agroalimentaire du Québec, Québec. 73  https://www.craaq.qc.ca/Publications-du-CRAAQ/une-agroforesterie-pour-le-quebec-document-de-reflexion-et-d_orientation/p/PAGF0102-PDF
  3. Artru, S., Garré, S., Dupraz, C., Hiel, M.-P., Blitz-Frayret, C. et Lassois, L. 2017. Impact of spatio-temporal shade dynamics on
    wheat growth and yield, perspectives for temperate agroforestry. European Journal of Agronomy, 82, 60–70. https://
    doi.org/10.1016/j.eja.2016.10.004
  4. Baker et coll. 2018. Impacts of Windbreak Shelter on Crop and Livestock Production. Crop & Pasture Science 69(8): 785–96.
  5. Bélanger, G. 2016. Défis et opportunités des changements climatiques pour les fermes laitières du Québec. Symposium sur les    
    bovins laitiers. Retrieved from https://www.agrireseau.net/bovinslaitiers/documents/96512/defis-et-opportunites-des-changements-climatiques-pour-les-fermes-laitieres-du-quebec
  6. Bélanger, G., Castonguay, Y., Bertrand, A., Dhont, C., Rochette, P., Couture, L., … Michaud, R. 2006. Winter damage to perennial forage crops in eastern Canada: Causes, mitigation, and prediction. Revue Canadienne de Phytotechnie, 86 (1), 33–47. https://doi.org/10.4141/P04-171
  7. Bélanger, G., Rochette, P., Castonguay, Y., Bootsma, A., Mongrain, D. et Ryan, D. A. J. 2002. Climate change and winter survival of perennial forage crops in Eastern Canada. Agronomy Journal, 94, 1120–1130. https://doi.org/10.2134/agronj2002.1120
  8. Biopterre. 2011. Des haies brise-vent pour réduire la dérive des pesticides en verger. https://www.agrireseau.net/
    documents/80964/des-haies-brise-vent-pour-reduire-la-derive-des-pesticides-en-verger-de-la-planification-a-l_entretien
  9. Bootsma, A., Gameda, S. et McKenney, D. W. 2005. Potential impacts of climate change on corn, soybeans and barley yields in Atlantic Canada. Canadian Journal of Soil Science, 85(2), 345–357. https://doi.org/10.4141/S04-025
  10. Boulfroy, E., D. Babin, A. Vézina, G. Joanisse et D. Blouin. 2019. Optimisation de scénarios de plantation dans des bandes
    riveraines pour la séquestration du carbone. Centre d’enseignement et de recherche en foresterie de Sainte-Foy inc. (CERFO) et Cégep de Sainte-Foy. Rapport 2019-09. 82 pages + 3 annexes.  http://www.cerfo.qc.ca/index.php?id=18
  11. Brandle, J. R., Hodges, L. et Zhou, X. H. 2004. Windbreaks in North American agricultural systems. Agroforestry Systems,
    61, 65–78.
  12. Brenner, A. J. 1996. Microclimatic modifications in agroforestry. In Ong, C.K. and Huxley, P. (Ed.) Tree-Crop Interactions: A
    Physiological Approach (p. 159–187). Wallingford, UK: CAB International & ICRAF.
  13. Buergler, A. L., Fike, J. H., Burger, J. A., Feldhake, C. M., McKenna, J. R. et Teutsch, C. D. 2006. Forage nutritive value in an
    emulated silvopasture. Agronomy Journal, 98 (5), 1265–1273. https://doi.org/10.2134/agronj2005.0199
  14. Campi, P., Palumbo, A. D. et Mastrorilli, M. 2009. Effects of tree windbreak on microclimate and wheat productivity in a
          Mediterranean environment. European Journal of Agronomy, 30(3), 220–227. https://doi.org/10.1016/j.eja.2008.10.004
  15. Carrier, M., Rhéaume Gonzalez, F.A., Cogliastro, A., Olivier, A., Vanasse, A. et Rivest, D. 2019. Light availability, weed cover and crop yields in second generation of temperate tree-based intercropping systems. Field Crops Research, 239, 30-37.
  16. Carroll, Z. L., Bird, S. B., Emmett, B. A., Reynolds, B. et Sinclair, F. L. 2004. Can tree shelterbelts on agricultural land reduce flood risk? Soil Use and Management, 20, 357–359. https://doi.org/10.1079/SUM2004266
  17. Chagnon, M. 2016. Solutions préventives pour le maintien futur des pollinisateurs agricoles. In Congrès 2016. Ordre des
    Agronomes du Québec. Changements climatiques : Réflexions et actions agronomiques. 33 p.
  18. Cheng, C. S., Lopes, E., Fu, C. et Huang, Z. 2014. Possible impacts of climate change on wind gusts under downscaled future
    climate conditions: Updated for Canada. Journal of Climate, 27(3), 1255–1270. https://doi.org/10.1175/JCLI-D-13-00020.1
  19. Cleugh, H. A. 1998. Effect of windbreaks on air-flow, microclimate and productivity. Agroforesty Systems, 55–84.
  20. Davis, J. E. et Norman, J. M. 1988. Effects of shelter on plant water use. Agriculture, Ecosystems and Environment, 22–23(C),
    393–402. https://doi.org/10.1016/0167-8809(88)90034-5
  21. Dix, M. E., Johnson, R. J., Harrell, M. O., Case, R. M., Wright, R. J., Hodges, L., … Young, L. J. 1995. Influences of trees on
    abundance of natural enemies of insect pests: a review. Agroforestry Systems, 29, 303–311.
  22. Dupraz, C. et Liagre, F. 2011. Agroforesterie, des arbres et des cultures, 2e édition. Paris, France : Éditions France-Agricole.
  23. Easterling, W. E, C. J. Hays, M. McKenney Easterling et J. R. Brandle. 1997. Modelling the Effect of Shelterbelts on Maize
    Productivity under Climate Change: An Application of the EPIC Model. Agriculture, Ecosystems & Environment 61(2–3): 163–76.
  24. Epila, J. S. O. 1988. Wind, crop pests and agroforest design. Agricultural Systems, 26(2), 99–110.
    https://doi.org/10.1016/0308-521X(88)90063-7
  25. Feldhake, C. M. 2002. Forage frost protection potential of conifer silvopastures. Agricultural and Forest Meteorology, 112(2),
    123–130. https://doi.org/10.1016/S0168-1923(02)00058-8
  26. Gagnon, A., Roy, M. et Roy, A. 2012. Impacts directs et indirects des changements climatiques sur les ennemis des cultures, 80 p. Retrieved from https://www.agrireseau.net/documents/81742/impacts-directs-et-indirects-des-changements-climatiques-sur-les-ennemis-des-cultures
  27. Gardiner, B., Berry, P. et Moulia, B. 2016. Review: Wind impacts on plant growth, mechanics and damage. Plant Science, 245,
    94–118. Retrieved from https://ac-els-cdn-com.acces.bibl.ulaval.ca/S0168945216300061/1-s2.0-S0168945216300061-main.pdf?
    tid=582dd460-388d-4751-92ce-4db622df39f2&acdnat=1547606309_f9f74bec744f52656badcbf0d1896f10
  28. GIEC. 2007. Bilan 2007 des changements climatiques. Contribution des Groupes de travail I, II et III au quatrième Rapport
    d’évaluation du Groupe d’experts intergouvernemental sur l’évolution du climat [Équipe de rédaction principale, Pachauri, R.K. et
    Reisinger, A. (publié sous la direction de~)]. GIEC, Genève, Suisse, 103 pages.
  29. He, Y., Jones, P. J. et Rayment, M. 2017. A simple parameterisation of windbreak effects on wind speed reduction and resulting
    thermal benefits to sheep. Agricultural and Forest Meteorology, 239, 96–107. https://doi.org/10.1016/j.agrformet.2017.02.032
  30. Hernández-Morcillo, M., Burgess, P., Mirck, J., Pantera, A. et Plieninger, T. 2018. Scanning agroforestry-based solutions for climate change mitigation and adaptation in Europe. Environmental Science and Policy, 80, 44–52. https://doi.org/10.1016/j.envsci.2017.11.013
  31. Hinch, G. N. et Brien, F. 2014. Lamb survival in Australian flocks: a review. Animal Production Science, 54, 656–666.
    https://doi.org/10.1071/AN13236
  32. Jose, S., Gillespie, A. R. et Pallardy, S. G. 2004. Interspecific interactions in temperate agroforestry. Agroforestry Systems,
    61, 237–255.
  33. Kanzler, M., Böhm, C., Mirck, J., Schmitt, D. et Veste, M. 2018. Microclimate effects on evaporation and winter wheat (Triticum
    aestivum L.) yield within a temperate agroforestry system. Agroforestry Systems, 4. https://doi.org/10.1007/s10457-018-0289-4
  34. Kilaka, E. K. 2015. The effects of windbreaks on the effectiveness of sprinkler irrigation systems. (Thèse de doctorat). Oter retrieved from https://ir.canterbury.ac.nz/bitstream/handle/10092/10420/thesis_fulltextpdf.pdf?sequence=1
  35. Kort, J. 1988. Benefits of Windbreaks to Field and Forage Crops. Agriculture, Ecosystems and Environment. 23:165–90.
  36. Kudo, G. et Ida, T. Y. 2013. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology, 94(10), 2311–2320. https://doi.org/10.1890/12-2003.1
  37. Le Conte, Y. et Navajas, M. 2008. Changements climatiques : impact sur les populations d’abeilles et leurs maladies. Revue
    scientifique et technique – Office international des épizooties, 27 (2), 485–497.
  38. Lee, M. A., Davis, A. P., Chagunda, M. G. G. et Manning, P. 2017. Forage quality declines with rising temperatures, with
    implications for livestock production and methane emissions. Biogeosciences, 14, 1403–1417. https://doi.org/10.5194/
    bg-14-1403-2017
  39. Mailhot, A., S. Duchesne, D. Caya et G. Talbot. 2007. Assessment of future change in intensity-duration-frequency (IDF) curves for Southern Quebec using the Canadian Regional Climate Model CRCM. Journal of Hydrology 347: 197-210.
  40. Malézieux, E., Crozat, Y., Dupraz, C., Laurans, M., Makowski, D., Ozier-Lafontaine, H., Rapidel, B., de Tourdonnet, S. et Valantin-
    Morison, M. 2009. Mixing plant species in cropping systems: concepts, tools and models: A review. Agronomy for Sustainable
    Development, 29, 43–62. https://doi.org/10.1051/agro:2007057 : 10.1051/agro:2007057
  41. Mcnaughton, K. G. 1988. Effects of turbulence on windbreaks and microclimate. Agriculture, Ecosystems and Environment,
    23, 17–39. https://doi.org/10.1016/0167-8809(88)90006-0
  42. Moisan-DeSerres, J., M. Chagnon et V. Fournier. 2015. Influence of Windbreaks and Forest Borders on Abundance and Species
    Richness of Native Pollinators in Lowbush Blueberry Fields in Québec, Canada. Canadian Entomologist 147(4): 432–42.
  43. Michaud, A., Gombault, C., Cyr, J.-F. et Côté, H. 2012. Implications des scénarios climatiques futurs sur la gestion des sols et de
    l’eau à la ferme. https://www.craaq.qc.ca/Publications-du-CRAAQ/implications-des-scenarios-climatiques-futurs-
    sur-la-gestion-des-sols-et-de-l_eau-a-la-ferme/p/PAGR0106
  44. Middleton, H. 2001. Agroforestry and its effects on ecological guilds and arthropod diversity. M.Sc. (Forestry) Thesis. Faculty of
    Forestry, University of Toronto, Toronto, Ontario, Canada.
  45. Mitlöhner, F. M., Morrow, J. L., Dailey, J. W., Wilson, S. C., Galyean, M. L., Miller, M. F. et McGlone, J. J. 2001. Shade and water
    misting effects on behavior, physiology, performance, and carcass traits of heat-stressed feedlot cattle. Journal of Animal Science, 79, 2327–2335.
  46. Moulia, B. et Combes, D. 2004. Thigmomorphogenetic acclimation of plants to moderate winds greatly affects height structure in
    field-gown alfalfa (Medicago sativa L.), an indeterminate herb. Comparative Biochemistry and Physiology—Part A: Molecular &
    Integrative Physiology, 137, 77–85.
  47. Norton, R. L. 1988. Windbreaks: Benefits to orchard and vineyard crops. Agriculture, Ecosystems and Environment, 22–23(C), 205–213. https://doi.org/10.1016/0167-8809(88)90019-9
  48. Nuberg, I. K. 1998. Effect of shelter on temperate crops: A review to define research for Australian conditions. Agroforestry Systems, 41(1), 3–34. https://doi.org/10.1023/A:1006071821948
  49. Ouranos. 2010. Savoir s’adapter aux changements climatiques. Montréal, 128 p. ftp://ftp.mrnf.gouv.qc.ca/Public/Defh/Sfa/CCvsPoissons/Savoir S’adapter aux CC 53_sscc_21_06_lr.pdf
  50. Ouranos. 2015. Vers l’adaptation. Synthèse des connaissances sur les changements climatiques au Québec. Édition 2015. Montréal, Québec : Ouranos. 415 p.
  51. Ouranos. 2018. Portraits climatiques. [En ligne] https://www.ouranos.ca/ouranos/ Consulté le 12.06.2019
  52. Pardon, P., Reubens, B., Mertens, J., Verheyen, K., De Frenne, P., De Smet, G.,… Reheul, D. 2018. Effects of temperate agroforestry on yield and quality of different arable intercrops. Agricultural Systems, 166, 135–151.
  53. Pasek, J. E. 1988. Influence of Wind and Windbreaks on Local Dispersal of Insects. Agriculture, Ecosystems and Environment, 22/23, 539–554.
  54. Peng, X., Thevathasan, N. V., Gordon, A. M., Mohammed, I. et Gao, P. 2015. Photosynthetic response of soybean to microclimate in 26-year-old tree-based intercropping systems in southern Ontario, Canada. PLoS ONE, 10(6), 1–10. https://doi.org/10.1371/journal.pone.0129467
  55. Pent, G. J., Fike, J. H. et Kim, I. 2018. Ewe lamb vaginal temperatures in hardwood silvopastures. Agroforestry Systems, 1–12. https://doi.org/10.1007/s10457-018-0221-y
  56. Pumariño, L., Sileshi, G. W., Gripenberg, S., Kaartinen, R., Barrios, E., Muchane, M. N., … Jonsson, M. 2015. Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic and Applied Ecology, 16(7), 573–582. https://doi.org/10.1016/j.baae.2015.08.006
  57. Reynolds, P. E., Simpson, J. A., Thevathasan, N. V. et Gordon, A. M. 2007. Effects of tree competition on corn and soybean photosynthesis, growth, and yield in a temperate tree-based agroforestry intercropping system in southern Ontario, Canada. Ecological Engineering, 29(4), 362–371. https://doi.org/10.1016/j.ecoleng.2006.09.024
  58. Rivest, D., Paquette, A., Moreno, G. et Messier, C. 2013. A meta-analysis reveals mostly neutral influence of scattered trees on pasture yield along with some contrasted effects depending on functional groups and rainfall conditions. Agriculture, Ecosystems and Environment, 165, 74–79. https://doi.org/10.1016/j.agee.2012.12.010
  59. Rivest, D. et Vézina, A. 2015. Maize yield patterns on the leeward side of tree windbreaks are site-specific and depend on rainfall conditions in eastern Canada. Agroforestry Systems, 89(2), 237–246. https://doi.org/10.1007/s10457-014-9758-6
  60. Smith, B. D. et Lewis, T. 1972. The effects of windbreaks on the blossom-visiting fauna of apple orchards and on yield. Annals of Applied Biology., (72), 229–238.
  61. Smith, Pearce, B. D. et Wolfe, M. S. 2012. Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? Renewable Agriculture and Food Systems, 28(1), 80–92. https://doi.org/10.1017/S1742170511000585
  62. St-Pierre, N. R., Cobanov, B. et Schnitkey, G. 2003. Economic Losses from Heat Stress by US Livestock Industries. Journal of Dairy Science, 86, E52—E77. https://doi.org/10.3168/jds.S0022-0302(03)74040-5
  63. Thevathasan, N. V. et Gordon, A. M. 2004. Ecology of tree intercropping systems in the North temperate region: Experiences from southern Ontario, Canada. Agroforestry Systems, 61–62(1–3), 257–268. https://doi.org/10.1023/B:AGFO.0000029003.00933.6d
  64. Vézina, A. 2001. Les haies brise-vent. Mise à jour du cours no.19. Formation continue. De l’Ordre des ingénieurs forestiers du Québec. 18 p. Retrieved from https://www.agrireseau.net/agroenvironnement/documents/Haies brise vent_OIFQ.pdf
  65. Vézina, A. 2005. Des haies brise-vent autour des bâtiments d’élevage et des cours d’exercice. ITA, campus de La Pocatière. http://www.wbvecan.ca/francais/images/guide.pdf
  66. Vézina, A. et Tourigny, A. 2007. Coûts et bénéfices des haies brise-vent. Porc Québec. Juin 2007. 42-44. https://www.agrireseau.net/agroenvironnement/documents/Environnement_Couts-haies-brise-vent.pdf
  67. Vézina, A. 2015. données non publiées.
  68. Wang, H. et Takle, E. S. 1997. Momentum budget and shelter mechanism of boundary-layer flow near a shelterbelt. Boundary-Layer Meteorology, 82(3), 417–437. https://link-springer-com.acces.bibl.ulaval.ca/content/pdf/10.1023%2FA%3A1000262020253.pdf

Le CRAAQ remercie ses membres partenaires :

Pour le gouvernement du Québec, les deux membres partenaires sont le ministère de l'Agriculture, des Pêcheries et de l'Alimentation
et La Financière agricole du Québec